JavaScript (JS)

- HTML-embedded scripting language

- Client-side
- Interpreted by the browser

- Event-driven
- EXxecution is triggered by user actions

- Has become a fundamental part of web development

- Today, JavaScript is used by 92.6% of all websites

- Many of the new HTMLS features are exposed through HTMLS
JavaScript APIs

JavaScipt vs. Java

- JavaScript doesn’t have much to do with Java
- Syntax is almost the same

- JS variables are dynamically typed (i.e., type cannot be determined
before the script is executed)

- JS objects are dynamic (members and methods of an object can change
during execution)

- OOP model is different (prototypal vs. classical inheritance)

Uses of JS

- o provide programming capability on the client side
- Note that JS works even when the client is offline!

- To transfer some of the load from the server to the client
- To create highly responsive user interfaces
- To provide dynamic functionality

Outline for today

- Embedding

- Syntax

- Types and variables

- Objects and functions

Embedding in HTML

- Explicit embedding (inline)

<script>

</script>

- Implicit embedding (referencing a separate .js file)

<script src="myfile.js"></script>

Separate closing tag is needed!
<script src=".." /> wil not work!

Execution

- JS in <head>

- EXxecuted as soon as the browser parses the head, before it has parsed
the rest of the page

- JS in <body>

- Executed when the browser parses the body (from top to down)

General syntax

- Much like Java
- JS Is case-sensitive!

- Reserved words
- function, 1if, this, var, return,
- See the full list at http://www.w3schools.com/|s/|S reserved.asp

- Comments

http://www.w3schools.com/js/js_reserved.asp

Syntax (best practice)

- Each statement Is in a separate line, terminated with a
semicolon

- No semicolon after }
- Indentation!

Control statements - if

if (a > b) {
document.write("a is greater than b");
I3

else {
document.write("b is greater than a");
I3

- Conditional (ternary) operator

var voteable = (age < 18) ? "Too young" : "Old enough";

Control statements - switch

switch (color) {
case ''red":

break;
case ''green":

break;
default:

Control statements - loops

for (var 1 = 0: i < 10: i++) {

document. (1);

¥

var 1 = 0;

while (1 < 10) {
document. (1);
I++:

}

Break and continue

- They work the same way as In Java
- break; "jumps out" of a loop
- continue; "jumps over" one iteration in the loop

Display possibilities

- JS can "display"” data in different ways:
- Writing into the browser console, using console. log()

Writing into an alert box,
Writing into the HTML ou
Writing into an
Se

ting the va

HTML e

ue of a -

using window.alert()
put using document.write()

ement, using 1tnnerHTML

TML

form element using element.value

Where to find the console?

- Firefox

- Tools/Web Developer/Web console

- Chrome

- View/Developer/Javascript console

- Internet Explorer (IE9+

- Developer Tools

® / Example: Writing to console \ ==
(- file:///Users/kbalog/work/github/we c Search 43 A ﬁ B v | @ # vy » =
R | L3I Inspector ' () Debugger | [£ Style Editor | (2) Performance | = Network | O 0 x
® Net ® CSS JS @ Security Logging @ Server Clear Filter output
display_con.. :8:9
® ® [Example: Writing to consc! X =
&« C' | file:///Users/kbalog/work/github/web-programming/examples/js/basics/display_console.html ¢ =
&x O Elements Console Sources Network Timeline Profiles Resources Security Audits Cookies X
© W <topframe> Vv Preserve log
display console.html:8

Hello world

Types & variables

Declaring variables

- Implicitly, by assigning it a value

name = "John";

- Explicitly, using a declaration statement (recommended)

var name = "John":

- Declaring many variables in one statement:

var name = "John", age = 23, car = "Audi A4";

- JS Is loosely typed
- lype Is determined by the interpreter
- A variable can change its data type

variable names

- Can contain letters, digits, underscores, and dollar signs
- Must begin with a letter (or $ or)

- Variable names are case sensitive!

- Reserved words cannot be used

- Variable naming conventions
- Use camelCase
- Variables that begin with $ are usually reserved for JavaScript libraries

- Don’t start variables with _ unless you have a very good reason to do so
(you’ll know if you do)

Primitive types

- number

- 123, 1.23, l.e2
- string

- "John", 'August'
- boolean

- true, false
- null

- null (reserved word) — represents "no value"

- undefined
- variable explicitly defined, but not assigned a value

Data types

- Can contain values
- string
- number
- boolean
- Object
- function

- Cannot contain values
- null
- undefined

The typeof operator

- The typeoTf operator can be used to find the data type of a
JavaScript variable

typeof "John"

typeof 3.14

typeof NaN

typeof false

typeof [1,2,3,4]

typeof {name:'John', age:34}
typeof new Datel()

typeof function () {}

typeof myCar

typeof null

implicit type conversions

- Interpreter performs several different implicit type conversions

(called coercions)

- When JavaScript tries to operate on a "wrong" data type, it will try to

convert the value to a "right” type

"August" + 1997
1997 + "August"

- The result Is not always what you would expect

5 + null
"+ null
2

2
II2II

¥ 1+

VS. ===

- Using == (or !=) type coercion will occur
- This can bring unpredictable results
99 == "99"
0 == false
" \n\n\n' == 0
' ' —— @
- Using === (or !==) type coercion will never occur (recommended)
- Exact comparison of the actual values
99 === "99"
0 === false

' \n\n\n' —_———

Predefined objects

- Primitive data types with values can also be objects
- number => Number
- string => String
- boolean => Boolean

- JS coerces between primitive type values and objects

- Don’t create Number/String/Boolean objects!
- Slows down execution speed and complicates the code.

Explicit type conversions

- Typically needed between strings and numbers

- Numbers to strings
- Using the constructor of the String class

var num = 0;
var str = String(num);

- Using the toString() method of the String class

var num = 06;
var str = num. ();

Explicit type conversions (2)

- Strings to numbers
- Using the constructor of the Number class

var str = "153";
var num = Number(str):

- Using the parselInt() or parseFloat () global functions

var numl = parseInt("10");
var num2 = parseFloat("10.33");

Operators

https://www.w3schools.com/jsref/jsref operators.asp

- Comparison
- == (===), | = (!:: , <, >, =, >=
- Boolean operators
- &&, || (short-circuit)
- Numeric operators
-+, =, %, /, %, ++, ——
- Bitwise operators
- &, |, ~ T, <<, >
- String concatenation

var str = "two " + "words":

- Mind that + I1s addition for numbers and concatenation for strings!

https://www.w3schools.com/jsref/jsref_operators.asp

Variable scope

- global vs. local
- within a function, local variables take precedence over global ones

- Implicitly declared => global scope

- explicitly declared (with var)
- outside function definitions => global scope
- within function definitions => local scope

- Best practice: avoid global variables

Objects & functions

Functions

function addoOne(num) {
return num + 1;
¥

console. (addOne(3)):

Functions (2)

- Functions can also be assigned to variables or passed as
parameters

var plusOne = addOne;
var result = plusOne(1);

function op(operation, value) {
return operation(value);
}

var result2 = op(addOne, 3);

- Nesting functions definitions is possible, but not recommended

Prototypal vs. Glassical 00P

- Classical OOP (Java, C++, etc.): objects are created by
iInstantiating classes

- Prototypal inheritance (JS): there are no classes, only objects;
generalizations are called prototypes
- It's simple and dynamic; better for dynamic languages
- However, JS uses the constructor pattern of prototypal inheritance
- This was to make it look more like Java, but can be confusing

Object prototypes

- Every JS object has a prototype
- Objects inherit their properties and methods from their prototype
- The prototype is also an object

- Creating an object prototype

- Using an object constructor function

function Dog(name, weight, breed) {
this.name = name;
this.weight = weight;
this.breed = breed;

}

- Then use the new keyword to create new objects from this prototype
var mydog = new Dog("Tiffy", 3.4, "mixed");

Object properties

- Properties are dynamic

- Can be added/deleted any time during interpretation

mydog.age = 12;
delete mydog.weight;

- Checking if a property exists
mydog.hasOwnProperty('"name")

- Listing properties

for (var prop in mydog) {
console. log(prop + ": " + mydogl[prop]l);
+

Object vs. prototype properties

- New properties can be added to an existing prototype using
the prototype property
- All Dog objects will have a gender property

Dog.prototype.gender = "unknown";

- Vs. adding a new property to a specific object
- Only the mydog instance will have the gender property

mydog.gender = "unknown";

Object methods

- Methods can be added by assigning a function to a property

- |Inside the constructor
function Dog(..) {

this.info = function() {

console. log("name: " + this.name);
console. log("weight: " + this.weight);
console. log("breed: " + this.breed);

r;
+

- Or using the prototype property
Dog.prototype.info = function() {

b

Alternatively

- To reuse code and avoid nested functions

function printInfo() {

console. log("name: " + this.name);
console. log("weight: " + this.weight);
console. log("breed: " + this.breed);

¥

function Dog(..) {

this.info = printInfo;

}
- Or

Dog.prototype.info = printInfo;

The instanceof operator

- The 1nstanceof operator returns true if an object is created
by a given constructor

var cars = ["Saab", "Volvo", "BMW"];

cars instanceof Array;
cars instanceof Object;
cars instanceof String;
cars instanceof Number;

Built-in objects

- Number
- Math

- Array

- String

- Date

The Number object

http://www.w3schools.com/jsref/jsref obj number.asp

- Properties
- Constant values: Number.MIN VALUE, Number.MAX VALUE

- Methods
- toString() — converts to String

0;
num. ();

var num
var Sstr

http://www.w3schools.com/jsref/jsref_obj_number.asp

The Math object

http://www.w3schools.com/jsref/jsref obj math.asp

- Properties
- Constant values: Math.PI

- Methods (call them using Math.)
- abs(x) — absolute value
- round(x), ceil(x), floor(x) — rounding
- min(x,y,z.), max(x,y,z..) — min/max value
- random() — random number between 0 and 1
- sin(x), cos(x), exp(x), ..

http://www.w3schools.com/jsref/jsref_obj_math.asp

The Array object

http://www.w3schools.com/jsref/|sref obj array.asp

- Creating
- Using the new keyword

var emptyArray = new Array();
var fruits = new Array("orange", "apple");

- Using the array literal (recommended)

var emptyArray = [];
var fruits = ["orange", "apple"];

- Properties

- Llength — sets or returns the number of elements
- only the assigned elements actually occupy space

http://www.w3schools.com/jsref/jsref_obj_array.asp

The Array object (2)

- Methods

- join(X,Yy,..)— joins two or more arrays

- 1ndex0f(x), lastIndexOf(x)— search for an element and return
ts position

- pop(), push(x)— remove/add element to/from the end of the array

- shift(), unshift(x)— remove/add element to/from the beginning
of the array

- sort() — sorts the elements

- reverse() — reverses the order of elements

- concat(x) — joins all elements into a string

Array example

function printArray(arr) {
for (var 1 = 0; 1 < arr.length; i++) {
document.write(arr[i] + "
");
s

}

var fruitsl = ["orange", "apple"];
var fruits2 = ["banana", "mango"];
fruits = fruitsl.concat(fruits2); // create a new array by concatenating 2 arrays

printArray(fruits);

var last = fruits.pop(); // remove last element (mango)
fruits.push("kiwi"); // add a new element to the end of the array

fruits.sort(); // sort array
printArray(fruits);

The String object

http://www.w3schools.com/jsref/jsref obj string.asp

- Properties
- Llength — length of the string

- Methods

- charAt(x) — returns character at a given position

- 1ndex0f(x), lastIndexOf (x)— search for a substring, return its
pOosSItion

- substr(x,y) — extracts substring

- replace(x,y) — replaces substring

- traim() — removes whitespaces from both ends of a string

- split(x) — splits a string into an array of substrings

http://www.w3schools.com/jsref/jsref_obj_string.asp

The Date object

http://www.w3schools.com/jsref/jsref obj date.asp

- Different ways to instantiate:

var today = new Date();
var dt = new Date(2013, 10, 09);

- Get day, month, year, etc.
- dt.getDay(), dt.getMonth(), dt.getYear()

- Compare two dates
if (dtl > dt2) {..}

- Set date

var dt2 = new Date():
dt2. (dt2. () + 5);

http://www.w3schools.com/jsref/jsref_obj_date.asp

Best practices

- Avoid global variables
- Put variable declarations at the top of each script or function
- Initialize variables when declaring them

- Treat numbers, strings, or booleans as primitive values, not as
objects

- Use [] instead of new Array()

- Beware of automatic type conversions
- Use === comparison

References

- W3C JavaScript and HTML DOM reference
http://www.w3schools.com/|sref/default.asp

- W3C JS School
http://www.w3schools.com/js/default.asp

- Mozilla JavaScript reference

https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference

http://www.w3schools.com/jsref/default.asp
http://www.w3schools.com/js/default.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

